Continuity and Discontinuity Functions Worksheet With Answers

Exercise 1

Study the following functions and determine if they are continuous. If not, state where the discontinuities exist and what type they are:

1 f(x) = \frac{5}{x^4 - 16}

2 f(x) = \frac{x - 7}{x^3 - x^2 - 11x + 3}

3 f(x) = \left\{\begin{matrix} x^2 - 1  if x \leq 0 \\ 2x - 3, if x>0 \end{matrix}\right

4 f(x) = \left\{\begin{matrix} x^2 - 1  if x \leq 0 \\2x - 3, if x>0 \end{matrix}\right

5 f(x) = \left\{\begin{matrix} \frac{1}{x}  if x < 1 \\\sqrt{x + 1}, if x\geq 1 \end{matrix}\right

6 f(x) = \left\{\begin{matrix} \frac{e^x}{e^x + 1}  if x \leq 0 \\x^2 + 1, if x> 1 \end{matrix}\right

The best Maths tutors available

Intasar

4.9

4.9 (38 reviews)

Gift icon

1st lesson free!

Paolo

4.9

4.9 (32 reviews)

Gift icon

1st lesson free!

Akash

5

5 (25 reviews)

Gift icon

1st lesson free!

Jamie

5

5 (16 reviews)

Gift icon

1st lesson free!

Sehaj

4.9

4.9 (33 reviews)

Gift icon

1st lesson free!

Harinder

5

5 (17 reviews)

Gift icon

1st lesson free!

Peter

5

5 (13 reviews)

Gift icon

1st lesson free!

Gian lorenzo

4.9

4.9 (8 reviews)

Gift icon

1st lesson free!

Intasar

4.9

4.9 (38 reviews)

Gift icon

1st lesson free!

Paolo

4.9

4.9 (32 reviews)

Gift icon

1st lesson free!

Akash

5

5 (25 reviews)

Gift icon

1st lesson free!

Jamie

5

5 (16 reviews)

Gift icon

1st lesson free!

Sehaj

4.9

4.9 (33 reviews)

Gift icon

1st lesson free!

Harinder

5

5 (17 reviews)

Gift icon

1st lesson free!

Peter

5

5 (13 reviews)

Gift icon

1st lesson free!

Gian lorenzo

4.9

4.9 (8 reviews)

Gift icon

1st lesson free!

Let's go

Exercise 2

Determine if the following function is continuous at x = 0.

f(x) = \left\{\begin{matrix} x ^ {\frac{1}{x}},  if x > 0 \\0, if x = 0 \end{matrix}\right

Exercise 3

Determine if the following function is continuous on (0,3). If not, state where the discontinuities exist and what type they are:

f(x) = \left\{\begin{matrix} x^2,  if0 < x < 1 \\0, if 1 \leq x < 2, x - 1, if 2 \leq x < 3 \end{matrix}\right

Exercise 4

Are the following functions continuous at x = 0?

f(x) = 2 ^ {-x}

Exercise 5

Given the function:

f(x) = \left\{\begin{matrix} \frac{x^2 - 25}{x - 5},  if x \neq 5 \\0, if x= 5\end{matrix}\right

1 Prove that f(x) is not continuous at x = 5.

2Is there a continuous function which coincides with f(x) for all values with the exception x = 5? If so, determine the function.

Exercise 6

Determine if the following function is continuous. If not, state where the discontinuities exist or why the function is not continuous:
f(x) = \frac{x + 1}{|x|}

Exercise 7

Determine if the following function is continuous at x = 0.

f(x) = \left\{\begin{matrix} x \cdot sin \frac{1}{x}  if x \neq 0 \\0, if x = 0 \end{matrix}\right

Exercise 8

Determine the value of a to make the following function continuous.

f(x) = \left\{\begin{matrix} x + 1, if x \leq 1 \\3 - ax^2, if x> 1 \end{matrix}\right

Exercise 9

The function defined by:

f(x) = \left\{\begin{matrix} \sqrt{ax}  if 0 \leq x \leq 8 \\\frac{x^2 - 32}{x - 4}, if x> 8 \end{matrix}\right

is continuous on [0, ∞).

Determine the value of a that would make this statement true.

Solution of exercise 1

Study the following functions and determine if they are continuous. If not, state where the discontinuities exist:

1 f(x) = \frac{5}{x^4 - 16}

The function is continuous at all points of its domain.

D = R - {-2, 2}

D = R − {−2,2}

The function has two points of discontinuity at x = −2 and x = 2.

2 f(x) = \frac{x - 7}{x^3 - x^2 - 11x + 3}

The function is continuous at R with the exception of the values that annul the denominator. If this is equal to zero and the equation is solved, the discontinuity points will be obtained.

x^3 - x^2 - 11x + 3 = 0

x = −3; and by solving the quadratic equation: x = 2 - \sqrt{3} and x = 2 + \sqrt{3} are also obtained

The function has three points of discontinuity at x = 3, x = 2 - \sqrt{3} and x = 2 + \sqrt{3}.

3 f(x) = \left\{\begin{matrix} x^2 - 1  if x \leq 0 \\ 2x - 3, if x>0 \end{matrix}\right

f(2) = 3

\[\lim _ {x \rightarrow 2^{-}} (x + 1) = 3\]

\[\lim _ {x \rightarrow 2^{+}} (2x - 1) = 3\]

The function is continuous.

4 f(x) = \left\{\begin{matrix} x^2 - 1  if x \leq 0 \\2x - 3, if x>0 \end{matrix}\right

f(0) = -1

\[\lim _ {x \rightarrow 0^{-}} (x^2 - 1) = -1\]

\[\lim _ {x \rightarrow 0^{+}} (2x - 3) = -3\]

The function has a jump discontinuity at x = 0 .

5 f(x) = \left\{\begin{matrix} \frac{1}{x}  if x < 1 \\\sqrt{x + 1}, if x\geq 1 \end{matrix}\right

f(1) = \sqrt{2}

\[\lim_{x \rightarrow 1^{-}} (\frac{1}{x}) = 1\]

\[\lim_{x \rightarrow 1^{+}} \sqrt{x + 1} = \sqrt{2}\]

The function has a jump discontinuity at x = 1 .

6 f(x) = \left\{\begin{matrix} \frac{e^x}{e^x + 1}  if x \leq 0 \\x^2 + 1, if x> 1 \end{matrix}\right

f(0) = \frac{1}{2}

\[\lim_{x \rightarrow 0^{-}} (\frac {e^x}{e^x + 1}) = \frac{1}{2}\]

\[\lim_{x \rightarrow 0^{+}} x^2 + 1 = 1\]

The function has a jump discontinuity at x = 1/2 .

Solution of exercise 2

Determine if the following function is continuous at x = 0.

f(x) = \left\{\begin{matrix} x ^ {\frac{1}{x}},  if x > 0 \\0, if x = 0 \end{matrix}\right

f(0) = 0

\[\lim_{x \rightarrow 0^{+}} x^ {\frac{1}{x}} = 0 ^ {\frac{1}{0^{+}}} = 0 ^{\infty} = 0\]

\[\lim_{x \rightarrow 0^{-}} x^ {\frac{1}{x}}\]

At x = 0, there is an essential discontinuity.

Solution of exercise 3

Determine if the following function is continuous on (0,3). If not, state where the discontinuities exist and what type they are:

f(x) = \left\{\begin{matrix} x^2,  if0 < x < 1 \\0, if 1 \leq x < 2, x - 1, if 2 \leq x < 3 \end{matrix}\right

f(1) = 0

\[\lim_{x \rightarrow 1^{-}} x^2 = 1\]

\[\lim_{x \rightarrow 1^{+}} 0 = 0\]

At x = 1, there is a jump discontinuity.

f(2) = 1

\[\lim_{x \rightarrow 2^{-}} 0 = 0\]

\[\lim_{x \rightarrow 2^{+}} x - 1 = 1\]

At x = 2, there is a jump discontinuity.

Solution of exercise 4

Are the following functions continuous at x = 0?

f(x) = 2 ^ {-x}

f(0) = 2 ^{-0} = \frac{1}{2^{0}} = 1

\[\lim_{x \rightarrow 0^{-}} 2^{-x} = 2 ^{0^{-}} = 2^0 = 1\]

\[\lim_{x \rightarrow 0^{+}} 2^{-x} = 2^{-0^{+}} = \frac{1}{2^0} = 1\]

The function is continuous at x = 0.

Solution of exercise 5

Given the function:

f(x) = \left\{\begin{matrix} \frac{x^2 - 25}{x - 5},  if x \neq 5 \\0, if x= 5\end{matrix}\right

1 Prove that f(x) is not continuous at x = 5.

f(5) = 0

\[\lim_{x \rightarrow 5} \frac{x^2 - 25}{x - 5} = \frac{0}{0}\]

Solve the indeterminate form.

\[\lim_{x \rightarrow 5} \frac{(x + 5) (x - 5)}{x - 5} = \lim_{x \rightarrow 5} (x + 5) = 10\]

f (x) is not continuous at x = 5 because:

\[\lim_{x \rightarrow 5} f(x) \neq f(5)\]

2 Is there a continuous function which coincides with f(x) for all values with the exception x = 5? If so, determine the function.

If

\[\lim_{x \rightarrow 5} f(x) = f(5) = 10\]

the function would be continuous, then the function is redefined:

f(x) = \left\{\begin{matrix} \frac{x^2 - 25}{x - 5},  if x \neq 5 \\0, if x= 5\end{matrix}\right

Solution of exercise 6

Determine if the following function is continuous. If not, state where the discontinuities exist or why the function is not continuous:

f(x) = \frac{x + 1}{|x|}

The function f(x) is continuous for x ≠ 0. Therefore, study the continuity at x = 0.

\[\lim_{x \rightarrow 0 ^{-}} \frac{x + 1}{|x|} = \lim_{x \rightarrow 0^{-}} \frac{x + 1}{-x} = \lim_{x \rightarrow 0^{-}}(-1 - \frac{1}{x}) = -1 - \frac{1}{0^{-}} = \infty\]

\[\lim_{x \rightarrow 0 ^{+}} \frac{x + 1}{|x|} = \lim_{x \rightarrow 0^{+}} \frac{x + 1}{x} = \lim_{x \rightarrow 0^{+}}(-1 - \frac{1}{x}) = -1 - \frac{1}{0^{+}} = \infty\]

The function is not continuous at x = 0, because it is defined at that point.

Solution of exercise 7

Determine if the following function is continuous at x = 0:

f(x) = \left\{\begin{matrix} x \cdot sin \frac{1}{x}  if x \neq 0 \\0, if x = 0 \end{matrix}\right

The function sin \frac{1}{x} is bounded by |sin \frac{1}{x}| \leq 1, x \neq 0,  therefore takes place:

\[\lim_{x \rightarrow{0}} (x \cdot sin \frac{1}{x}) = 0\]

, since any number multiplied by zero gives zero.

As f(0) = 0.

The function is continuous.

Solution of exercise 8

Determine the value of a to make the following function continuous:

f(x) = \left\{\begin{matrix} x + 1, if x \leq 1 \\3 - ax^2, if x> 1 \end{matrix}\right

f(1) = 2

\[\lim_{x \rightarrow 1^{-}} (x + 1) = 2\]

\[\lim_{x \rightarrow 1^{+}} (3 - ax^2) = 3 - a\]

3 - a = 2

a = 1

Solution of exercise 9

The function defined by:

f(x) = \left\{\begin{matrix} \sqrt{ax}  if 0 \leq x \leq 8 \\\frac{x^2 - 32}{x - 4}, if x> 8 \end{matrix}\right

is continuous on [0, ∞).

Determine the value of a that would make this statement true.

\[\lim_{x \rightarrow 8^{-}} \sqrt{ax} = \sqrt{8a}\]

\[\lim_{x \rightarrow 8^ {+}} \frac{x^2 - 32}{x - 4} = 8\]

\sqrt{8a} = 8

a = 8

spaullwifecing.blogspot.com

Source: https://www.superprof.co.uk/resources/academic/maths/calculus/limits/continuity-worksheet.html

0 Response to "Continuity and Discontinuity Functions Worksheet With Answers"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel